Reactivity of Chlorotrifluoromethylcarbene: Activation Parameters for Halocarbene–Alkene Addition Reactions

Robert A. Moss,* Lei Wang, and Karsten Krogh-Jespersen*

Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey 08903, United States

Supporting Information

ABSTRACT: Activation parameters are reported for $ClCCF_3$ additions to three alkenes (tetramethylethylene, cyclohexene, and 1-hexene). The results are compared to those for CCl_2 , CCIF, and CF_2 . Activation enthalpies decrease as the carbene stability decreases and its electrophilicity increases, and also as alkene reactivity (degree of alkylation) increases. Activation entropies decrease in parallel with activation enthalpies, suggesting the operation of enthalpy– entropy compensation in these carbene additions.

1. INTRODUCTION

The archetypal dihalocarbenes CCl_2 , CClF, and CF_2 manifest important relationships among structure, stability, and selectivity, as shown in Table 1.^{1–7} Computed stabilization

Table 1. Quantitative Measures of Carbene Reactivity

carbene	$\varepsilon_{ m LU}{}^a$	$\varepsilon_{\rm HO}{}^a$	$\Delta E_{\mathrm{stab}}{}^{b}$	ω^{c}	$m_{\rm CXY}^{d}$
ClCCF ₃	0.57	-11.30	21.3	1.21	0.31
CCl_2	1.00	-10.91	45.5	1.03	0.97
CClF	1.74	-11.71	56.1	0.92	1.22
CF_2	2.74	-12.85	70.9	0.82	1.47

^{*a*}In eV. Calculated at the HF/6-31G(d,p)//MP2/6-31G(d,p) level; see ref 7. ^{*b*}In kcal mol⁻¹. Defined as the negative of the reaction energy for CH₂ + CH₃X + CH₃Y \rightarrow CXY + 2CH₄, computed here at the B3LYP/6-311++G(2d,p) level; see ref 4. ^{*c*}In eV. ω = global electrophilicity = ($\varepsilon_{LU} + \varepsilon_{HO}$)²/[8($\varepsilon_{LU} - \varepsilon_{HO}$)], computed here at the HF/6-31G(d,p)//MP2/6-31G(d,p) level; see refs 6 and 7. ^{*d*}Calculated carbene selectivity index; see ref 5.

energies relative to CH₂ ($\Delta E_{\rm stab}$)^{4,8} decrease in the order CF₂ > CClF > CCl₂, spanning an energy range of approximately 25 kcal mol⁻¹. Simultaneously, the global electrophilicities (ω)^{6,7} of these carbenes increase in the opposite order, driven by decreasing LUMO ($\varepsilon_{\rm LU}$) and concurrently increasing HOMO ($\varepsilon_{\rm HO}$) energies. In parallel, the carbenes become less discriminating toward alkenes, as measured by the carbene selectivity index, $m_{\rm CXY}$.⁵

Most importantly, activation energies and enthalpies for additions of these dihalocarbenes to tetramethylethylene (TME), cyclohexene, and 1-hexene decrease in the same order (CF₂ > CClF > CCl₂).^{1-4,9} Moreover, from the available data, there appears to be *compensation* between ΔH^{\ddagger} and ΔS^{\ddagger} in these carbene-alkene additions: as ΔH^{\ddagger} decreases, ΔS^{\ddagger} also decreases ($-T\Delta S^{\ddagger}$ increases), thus mitigating the impact on ΔG^{\ddagger} . Activation enthalpy–entropy compensation might signify a mechanistically meaningful "extrathermodynamic" relation between ΔH^{\ddagger} and $\Delta S^{\ddagger,10}$ or it might be an artifact.¹¹ More information is required to assess the extent, persistence, and possible significance of enthalpy–entropy compensation in carbene–alkene addition reactions.

We chose to examine the reactions of chlorotrifluoromethylcarbene (ClCCF₃) for several reasons. (1) As shown in Table 1, ClCCF₃ is an extremum relative to the other carbenes. It is less stable than CCl_2 by a computed 24 kcal mol⁻¹, possesses a lower energy LUMO than CCl₂ by 0.4 eV, is more electrophilic on the ω scale, and is significantly less selective than CCl_2 by both calculated and experimental m_{CXY} values.^{12,13} (2) ClCCF₃ is readily generated from the corresponding diazirine, and its addition reactions with alkenes are clean and well-characterized.¹² (3) ClCCF₃ is predicted to be a ground-state singlet with an adiabatic singlet-triplet energy separation of 4.6 kcal mol⁻¹ according to calculations at the CCSD(T)/6-311+G(2df)//B3LYP/6-311+G(2df) level of theory; see the Supporting Information. This prediction agrees with experimental observations of stereospecific ClCCF₃ additions to cis- and trans-butene¹² and validates comparisons of $ClCCF_3$ to the other singlet halocarbenes of Table 1. (4) ClCCF₃ is also of interest in connection with synthetic studies of trifluoromethyl-substituted cyclopropanes.¹⁴

The results reported herein for the minimally stabilized, highly reactive, and strongly electrophilic ClCCF₃ significantly widen the breadth of $\Delta H^{\pm}/\Delta S^{\pm}$ interrogations of carbene-alkene addition reactions.

2. RESULTS AND DISCUSSION

We generated ClCCF₃ by laser flash photolysis (LFP) at 351 nm of 3-chloro-3-trifluoromethyldiazirine $(1)^{12,15}$ in pentane. The carbene was visualized by means of its isoquinoline ylide (2),¹⁶ which absorbed strongly at 404 nm (major absorptions

Received:September 16, 2013Published:October 8, 2013

The Journal of Organic Chemistry

predicted at 441 nm (f = oscillator strength = 0.09) and at 380 nm (f = 0.63) via a TD-B3LYP/6-311++G(2d,p)//B3LYP/6-311++G(2d,p) calculation with simulated pentane solvent (CPCM model). The LFP UV-vis spectrum of **2** appears in Figure 1.

Figure 1. UV-vis spectrum of isoquinoline ylide of $ClCCF_3$ in pentane (404 nm): [isoquinoline] = 0.42 M; A(1) = 0.5, 120 ns after laser flash.

Absolute rate constants for the additions of ClCCF₃ to alkenes were measured by the ylide method,¹⁶ wherein the apparent rate of formation of ylide **2** is accelerated by the addition of an alkene at a constant concentration (0.42 M) of isoquinoline. Correlation of the observed rate constants for the formation of **2** vs [alkene] produces a straight line, whose slope is k_{add} for the addition of ClCCF₃ to the alkene.¹⁷ Figure 2 illustrates the determination of the rate constant for addition of

Figure 2. Determination of the rate constant for addition of CICCF_3 to TME in pentane at 299.8 K: $k = 1.83 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$, r = 0.997.

ClCCF₃ to TME at 300 K. A very good linearity is observed between the apparent rate of formation of ylide **2** and the concentration of TME (r = 0.997). The slope of the correlation gives $k_{\text{add}} = 1.83 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$.

Analogous correlations for determinations of k_{add} for ClCCF₃ with trimethylethylene, cyclohexene, and 1-hexene are shown in Figures S-1–S-3 in the Supporting Information. Rate constants for the additions of ClCCF₃ to the four alkenes appear in Table 2, where they are compared to analogous data for CCl₂, ^{18,19} CClF, ¹⁸ and CF₂.²

'	Table 2.	Rate Constan	ts for Carber	ne Additions'	1
	alkene ^b	ClCCF ₃	CCl_2^c	CClF^d	CF_2^{e}
	TME	1.8×10^{9}	4.7×10^{9}	1.2×10^{9}	6.4×10^{8}
	Tri-Me	2.2×10^{8}	2.5×10^{9}	3.8×10^{8}	1.3×10^{8}
	$c-C_{6}H_{10}$	2.6×10^{7}	6.4×10^{7}	2.7×10^{7}	1.4×10^{7}
	1-hex	2.0×10^{7}	1.8×10^{7}	1.1×10^{7}	2.4×10^{6}

^{*a*}From diazirine photolyses in pentane at 24 °C, except ClCCF₃ at 27 °C. Variation in rate constants ($M^{-1} s^{-1}$) is $\leq 10\%$; correlation coefficients are ≥ 0.994 . ^{*b*}Alkenes: TME = tetramethylethylene; Tri-Me = trimethylethylene; c-C₆H₁₀ = cyclohexene; 1-hex =1-hexene. ^cReferences 18 and 19. ^{*d*}Reference 18. ^{*c*}Reference 2.

As expected, ClCCF₃ is electrophilic; k_{add} increases as the alkene substrate becomes more heavily alkylated or nucleophilic. However, given its lower stability and greater electrophilicity relative to CCl_2 (Table 1), it is surprising that $ClCCF_3$ reacts more slowly than CCl₂ with the alkenes TME, trimethylethylene, and cyclohexene (Table 2; for 1-hexene, the rates of addition for ClCCF₃ and CCl₂ are comparable). It is tempting to ascribe this to "steric effects" originating at the larger CF₃ substituent present in ClCCF₃. It is known, however, that ClCCF₃ experiences less steric retardation than CCl₂ in additions to RCH= CH_2 (where R = Et, *i*-Pr, *t*-Bu): Taft steric susceptibility values (δ) are 0.41 for ClCCF₃ vs 0.88 for CCl₂.^{12,20,21'} A conventional rationalization of these results is that the destabilized, highly reactive ClCCF₃ adds to alkenes via earlier, more "open," less sterically demanding transition states than the more stabilized, less reactive CCl₂.¹² In reality, however, the lower reactivity of ClCCF₃ vs CCl₂ toward (e.g.) TME or cyclohexene is due to very unfavorable entropies of activation in the addition reactions (see below).

Activation parameters for ClCCF₃ additions to TME, cyclohexene, and 1-hexene in pentane were obtained from LFP determinations of $k_{\rm add}$ at five temperatures between 283 and 309 K.^{17,22} Precise temperatures (±0.1 K) were determined at the instant of LFP via a thermocouple immersed in the reaction solution. The resulting Arrhenius correlations are shown in Figures 3–5, and the $k_{\rm add}$ determinations on which they are based appear in Figures S-4–S-17 in the Supporting Information.

The Arrhenius correlations are of good quality, with r ranging from 0.990 to 0.998. Values of E_a and A were obtained from the slope and intercept, respectively, of each correlation line, and converted to ΔH^{\ddagger} and ΔS^{\ddagger} by standard formulas.²³ Results for ClCCF₃, as well as for CCl₂, CClF, and CF₂, are collected in Table 3.²⁴

Anticipated trends²⁵ in activation enthalpies ΔH^{\ddagger} are clearly expressed in Table 3. Values of E_a (and hence ΔH^{\ddagger}) decrease with each alkene in the order of decreasing carbene stability: ClCCF₃ < CCl₂ < CClF < CF₂. ΔH^{\ddagger} is largest for each carbene with 1-hexene and smallest with TME. With TME, additions of

The Journal of Organic Chemistry

Figure 3. Determination of the activation energy for addition of ClCCF₃ to TME: $E_a = -2.06$ kcal mol⁻¹, log A = 7.8 M⁻¹ s⁻¹, r = 0.998.

Figure 4. Determination of the activation energy for addition of CICCF_3 to cyclohexene: $E_a = 2.65 \text{ kcal mol}^{-1}$; $\log A = 9.3 \text{ M}^{-1} \text{ s}^{-1}$, r = -0.990.

ClCCF₃ and CCl₂ exhibit negative values of ΔH^{\ddagger} (and E_a); barriers to these additions appear in ΔG^{\ddagger} and are a consequence of strongly negative ΔS^{\ddagger} values.^{25b-d} Similar behavior is observed in the additions of phenylhalocarbenes to TME.^{25e}

Indeed, ΔS^{\ddagger} is dominant in the additions of ClCCF₃ to all three alkenes; in each case, $-T\Delta S^{\ddagger}$ makes a larger contribution to ΔG^{\ddagger} than does ΔH^{\ddagger} . (This is also true of the additions of CCl₂, CClF, and CF₂ to TME; cf. Table 3.)

Most intriguingly, compensation between ΔH^{\ddagger} and ΔS^{\ddagger} persists upon extension of scrutiny to ClCCF₃: with each alkene, and for all four carbenes, ΔS^{\ddagger} decreases as ΔH^{\ddagger} decreases. From the pairing of the most stabilized carbene and least reactive alkene (CF₂ + 1-hexene) to that of the least stabilized carbene and most reactive alkene (ClCCF₃ + TME), ΔH^{\ddagger} decreases by 10 kcal mol⁻¹ while ΔS^{\ddagger} decreases by 21 eu. Hence, ΔG^{\ddagger} decreases by only 4 kcal mol⁻¹ across the full set

Figure 5. Determination of the activation energy for addition of ClCCF₃ to 1-hexene: $E_a = 3.48$ kcal mol⁻¹, log A = 9.8 M⁻¹ s⁻¹, r = -0.997.

of carbene–alkene combinations, because the decreasing ΔH^{\ddagger} value is offset by an increasing $-T\Delta S^{\ddagger}$ value. ΔH^{\ddagger} for ClCCF₃ addition to TME, cyclohexene, or 1-hexene is more favorable than for CCl₂ addition, but the decrease in ΔH^{\ddagger} is opposed by an even larger (or comparable, in the case of 1-hexene) change in $-T\Delta S^{\ddagger}$. Consequently, ClCCF₃ is less reactive than CCl₂ when adding to TME or cyclohexene.

In the abstract, parallel decreases in ΔH^{\ddagger} and ΔS^{\ddagger} in a set of related reactions are not surprising: "for each mechanism of interaction between molecules...the maximum reduction in energy for the system is obtained only if certain geometrical conditions are met. The geometrical conditions of course constitute a constraint and mean that the decrease will be accompanied by some decrease in entropy."¹⁰ Indeed, a linear correlation with a positive slope is frequently observed between ΔH^{\ddagger} and ΔS^{\ddagger} in a series of related reactions.¹⁰ In the present case, we find fair $\Delta H^{\ddagger}/\Delta S^{\ddagger}$ correlations for the three alkene– carbene reaction sets of Table 3 (Figure 6). The slopes of these correlation lines (the isokinetic temperatures) range from 310 to 384 K, bracketing the "isoselective" temperature of 360 K observed for the competitive additions of various dihalocarbenes to trimethylethylene–isobutene.²⁶

We caution that $\Delta H^{\ddagger}/\Delta S^{\ddagger}$ correlations are subject to substantial error propagation and are often spurious.¹¹ Even ignoring these correlations, however, the marked parallel decreases in ΔH^{\ddagger} and ΔS^{\ddagger} between the CF₂ + 1-hexene and ClCCF₃ + TME pairings in Table 3 are far beyond experimental error, supporting some form of enthalpy–entropy compensation operating in these carbene–alkene additions. Such compensation appears contrary to Hammond-based conceptions of these reactions, in which ΔS^{\ddagger} should *increase* as the carbene's reactivity increases and its addition reaction transition state becomes earlier and more open.²⁵

Currently available conventional electronic structure techniques (ab initio or DFT) are not adequate for the study of these halocarbene–alkene addition reactions, which feature very small (or even negative) enthalpy barriers.¹ Fundamental discrepancies exist between experimental and computed activation parameters. In particular, computed gas-phase activation entropies for halocarbene–olefin additions are

Table 3. Activation Parameters for Carbene Additions^a

carbene	alkene ^b	E_{a}	log A	ΔH^{\ddagger}	ΔS^{\ddagger}	$-T\Delta S^{\ddagger}$	ΔG^{\ddagger}
ClCCF ₃ ^c	TME	-2.1	7.8	-2.6	-25	7.4	4.8 (0.1)
CCl_2^d	TME	-1.2	8.8	-1.8	-20	6.0	4.2 (0.2)
CClF^d	TME	0.9	9.7	0.3	-16	4.7	5.0 (0.2)
CF_2^{e}	TME	3.0	11.0	2.5	-10	3.0	5.5 (0.3)
ClCCF ₃ ^c	c-C ₆ H ₁₀	2.6	9.3	2.1	-17.8	5.3	7.4 (0.6)
$\operatorname{CCl_2}^d$	c-C ₆ H ₁₀	3.8	10.9	3.3	-10.5	3.1	6.4 (0.4)
CClF^d	c-C ₆ H ₁₀	5.6	11.5	5.0	-7.8	2.3	7.3 (0.4)
CF_2^e	c-C ₆ H ₁₀	6.9	12.3	6.3	-4.3	1.3	7.6 (0.5)
ClCCF ₃ ^c	1-hex	3.5	9.8	2.9	-15.5	4.6	7.5 (0.5)
CCl_2^d	1-hex	4.7	10.7	4.1	-11.5	3.4	7.5 (0.4)
CClF^d	1-hex	6.0	11.5	5.4	-7.8	2.3	7.7 (0.3)
CF_2^e	1-hex	8.0	12.4	7.4	-3.9	1.1	8.6 (0.1)

^{*a*}Units are kcal mol⁻¹ for E_a , ΔH^{\ddagger} , $-T\Delta S^{\ddagger}$, and ΔG^{\ddagger} , M^{-1} s⁻¹ for log *A*, and cal deg⁻¹ mol⁻¹ for ΔS^{\ddagger} . ΔH^{\ddagger} is determined at 283 K; ΔG^{\ddagger} is calculated at 298 K. $E_a = \Delta H^{\ddagger} + RT$. Errors are 0.2–0.3 kcal mol⁻¹ or less in E_a , and errors in ΔS^{\ddagger} are ~1 eu; errors are shown in parentheses for ΔG^{\ddagger} . ^{*b*}Abbreviations: TME = tetramethylethylene, *c*-C₆H₁₀ = cyclohexene, 1-hex = 1-hexene. ^{*c*}This work; correlation coefficients were ≥0.990. ^{*d*}From ref 1. ^{*c*}From ref 2.

Figure 6. Plots of ΔH^{\ddagger} vs ΔS^{\ddagger} for the additions of ClCCF₃, CCl₂, CClF, and CF₂ to TME, cyclohexene, and 1-hexene. Data are taken from Table 3. Isokinetic temperatures (slopes) and correlation coefficients: TME, 354 K, r = 0.983; cyclohexene, 310 K, r = 0.961; 1-hexene, 384 K, r = 0.992.

consistently found to be considerably more negative than measured solution entropies.^{1,4} We have proposed that for some carbene-olefin pairs precoordination may occur with the formation of weakly bound π complexes,¹ and we have clearly documented the formation of stable π complexes from carbenes interacting with a number of arenes.²⁷ However, we have not been able to detect analogous halocarbene-alkene complexes or provide truly compelling computational evidence for their existence. For the present carbene-alkene set, computational attempts at locating precursor π -type complexes or TS's for cycloaddition failed at both DFT (B3LYP and M06-2X functionals, 6-311+G(d) basis sets) and ab initio (MP2/6-311+G(d)) levels; only product cyclopropanes or loosely associated ClCCF₃-alkene species resulted from many searches of the potential energy surfaces, initiated at assorted trial geometries. Any specific role(s) of solvent influencing the activation parameters also needs to be elucidated. A carefully calibrated quantum mechanical (or QM/MM) molecular dynamics approach could be rewarding in highlighting the

reasons behind, and possibly even resolving, these discrepancies,²⁸ although the need to evaluate both enthalpic and entropic contributions in solution makes daunting the prospect of studying the dynamic barriers present in formally barrierless reactions.

At the very least, however, the present results with ClCCF_{3} , in which the span of carbene stabilization energies has been broadened, reinforce the existence of an important and as yet unresolved conundrum in carbene–alkene additions.

3. CONCLUSION

Activation parameters are reported for ClCCF₃ additions to three alkenes (tetramethylethylene, cyclohexene, and 1-hexene). The results are compared to those for CCl₂, CClF, and CF₂. Activation enthalpies decrease (CF₂ > CClF > CCl₂) as the carbene stability decreases and also as alkene reactivity (TME > cyclohexene >1-hexene) increases. Activation entropies decrease in parallel with activation enthalpies, suggesting the operation of enthalpy–entropy compensation in these carbene additions.

4. EXPERIMENTAL SECTION

Preparative details have been published in full for 3-chloro-3trifluoromethyldiazirine (1).^{12,15} LFP experiments employed a Coherent Compex 120 excimer laser operating at 351 nm (XeF₂) emitting 42–56 ns light pulses with 55–65 mJ power. The detection system featured an Applied Photophysics #720 150 W pulsed xenon lamp with an ARC 620 lamp ignitor and an ARC 0-3-102 lamp pulser, a 1 in. Uniblitz shutter, and a Uniblitz 100-2B shutter drive control, an Instruments SA grating monochromator, and a RCA 4840 photomultiplier tube wired in a five-dynode configuration. Data collection and analysis utilized a Stanford Research Systems DG535 four-channel digital delay/pulse generator and a Tektronix TDA 520A two-channel digitizing oscilloscope. Data analysis used the Igor Pro 4.01 program (Wave Metrics, Inc.).

ASSOCIATED CONTENT

S Supporting Information

Text, figures, and tables giving kinetics and activation parameter data and computational details. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

*E-mail for R.A.M.: moss@rutchem.rutgers.edu. *E-mail for K.K.-J.: krogh@rutchem.rutgers.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to the National Science Foundation for financial support.

REFERENCES

(1) Moss, R. A.; Wang, L.; Zhang, M.; Skalit, C.; Krogh-Jespersen, K. J. Am. Chem. Soc. **2008**, 130, 5634.

(2) Moss, R. A.; Wang, L.; Krogh-Jespersen, K. J. Am. Chem. Soc. 2009, 131, 2128.

(3) Moss, R. A. J. Org. Chem. 2010, 75, 5773.

(4) Zhang, M.; Moss, R. A.; Thompson, J.; Krogh-Jespersen, K. J. Org. Chem. 2012, 77, 843.

(Š) (a) Moss, R. A. Acc. Chem. Res. **1980**, 13, 58. (b) Moss, R. A. Acc. Chem. Res. **1989**, 22, 15.

(6) (a) Perez, P. J. Phys. Chem. A 2003, 107, 522. (b) Parr, R. G.; Szentpaly, L.v.; Liu, S. J. Am. Chem. Soc. 1999, 121, 1922.

(7) Moss, R. A.; Krogh-Jespersen, K. Tetrahedron Lett. 2013, 54, 4303.

(8) Rondan, N. G.; Houk, K. N.; Moss, R. A. J. Am. Chem. Soc. 1980, 102, 1770.

(9) We observe a general parallel between the computed ΔE_{stab} value for CXY and the experimental E_a value for addition to a given alkene; both quantities decrease in tandem with CF₂ > CClF > CCl₂.

(10) Leffler, J. E.; Grunwald, E. Rates and Equilibria of Organic Reactions; Wiley: New York, 1963; Chapter 9.

(11) (a) Krug, R. R.; Hunter, W. G.; Grieger, R. A. Nature 1976, 261, 566. (b) Liu, L.; Guo, Q.-X. Chem. Rev. 2001, 101, 673. (c) Cornish-Bowden, A. J. Biosci. 2002, 27, 121.

(12) Moss, R. A.; Guo, W.; Denney, D. Z.; Houk, K. N.; Rondan, N. G. J. Am. Chem. Soc. **1981**, 103, 6164.

(13) ClCCF₃ is also an extremum relative to a representative sampling of 11 additional disubstituted singlet carbenes; see Table 1 in ref 7.

(14) Grygorenko, O. O.; Artamonov, O. S.; Komarov, I. V.; Mykhailiuk, P. K. *Tetrahedron* **2011**, *67*, 803.

(15) Grayston, M. W.; Lemal, D. M. J. Am. Chem. Soc. 1976, 98, 1278.

(16) For carbene/ylide visualization, see: Jackson, J. E.; Soundararajan, N.; Platz, M. S.; Liu, M. T. H. J. Am. Chem. Soc. 1988, 110, 5595.

(17) See the Supporting Information for graphical displays of kinetics and activation parameter data.

(18) Moss, R. A.; Tian, J.; Sauers, R. R.; Skalit, C.; Krogh-Jespersen, K. Org. Lett. 2007, 9, 4053.

(19) Moss, R. A.; Tian, J.; Sauers, R. R.; Ess, D. H.; Houk, K. N.; Krogh-Jespersen, K. J. Am. Chem. Soc. 2007, 129, 5167.

(20) Even in the syn-CF₃ addition mode, δ for ClCCF₃ addition to RCH=CH₂ is less than δ for CCl₂: 0.47 vs 0.88.¹² (δ is 0.39 for ClCCF₃ addition in the syn-Cl mode.)

(21) ClCCF₃ manifests *syn*-Cl stereoselectivity toward alkenes: *syn*-Cl/*syn*-CF₃ ratios are 1.48 for trimethylethylene, 1.65 for *cis*-butene, 1.28 for 1-butene, 1.36 for isopropylethylene, and 1.66 for *tert*-butylethylene.¹² We did not determine the stereoselectivity for ClCCF₃ additions to 1-hexene or cyclohexene, but the previous results suggest that these selectivities will be small and similar those for 1-butene and *cis*-butene, respectively.

(22) The intercepts (A) of the rate constant correlations reflect the background rate constant for ylide formation at [alkene] = 0. Given the constant [isoquinoline], A values should all be similar. However, they vary by as much as a factor of 2. This has no effect on the

determination of $k_{\rm add}$ (from the slope of the correlation), because each set of measurements uses the same stock solution. It does suggest, however, that [isoquinoline] is less accurate than the reported three places ("0.424 M"). We thank a reviewer for this observation.

(23) Gordon, A. J.; Ford, R. A. The Chemist's Companion; Wiley: New York, 1972; p 136.

(24) Note that ΔH^{\ddagger} for ClCCF₃ addition is reported at 283 K for comparisons to data for CCl₂, CClF, and CF₂, where 283 K was the midpoint of the Arrhenius temperature range. ΔG^{\ddagger} is reported at 298 K, generally considered the "standard" temperature.

(25) (a) Skell, P. S.; Cholod, M. S. J. Am. Chem. Soc. 1969, 91, 7131.
(b) Houk, K. N.; Rondan, N. G.; Mareda, J. Tetrahedron 1985, 41, 1555. (c) Houk, K. N.; Rondan, N. G.; Mareda, J. J. Am. Chem. Soc. 1984, 106, 4291. (d) Houk, K. N.; Rondan, N. G. J. Am. Chem. Soc. 1984, 106, 4293. (e) Moss, R. A.; Lawrynowicz, W.; Turro, N. J.; Gould, I. R.; Cha, Y. J. Am. Chem. Soc. 1986, 108, 7028.

(26) Giese, B.; Lee, W.-B.; Meister, J. Liebigs Ann. Chem. **1980**, 725. (27) See, for example: Wang, L.; Moss, R. A.; Thompson, J.; Krogh-Jespersen, K. Org. Lett. **2011**, 13, 1198.

(28) Xu, L.; Doubleday, C. E.; Houk, K. N. J. Am. Chem. Soc. 2011, 133, 17848.